Reducing TCAM Power Consumption and Increasing Throughput

Rina Panigrahy, Samar Sharma
(Cisco Systems)

Outline

• Problem
• Solution strategy
• Algorithms
• Further results
TCAM

- IP forwarding: core operation
- TCAMs are commonly used
- Easy to use, but lot of power (~15.3W)
- Multiple chips (4 to 8)
 - power = 8*15.3W = 123W
- Doesn’t scale in terms of power

Solution Strategy

- Current method looks up every TCAM chip
- Idea: prune the search to one TCAM
 - pre-compute by looking at DestIP which TCAM chip to search
- What is such a pre-computation?
IP address space: 0 to $2^{32}-1$
- Divide this into 4 parts

- Given DestIP
 - Find which range it falls in
 - Lookup in *only* that TCAM
Solution

- TCAM0 contains all prefixes that can match IP addresses from B0 to B1; and so on

Solution Details

- TCAM_i contains all prefixes that can match IP addresses from B_i to B_{i+1}.
- Look at the ranges [B0, B1], [B1, B2], …
- A prefix P belongs to [B_i, B_{i+1}] if P can match some address in that range
- Some prefixes can belong to multiple ranges
- Most belong to a unique range.
Prefixes in TCAM_i

- Look at the Patricia tree of the prefixes
- Look at paths
 - B0 to root, B1 to root,
 - Call these paths BP0, BP1,
- Look at the regions carved by these paths.
 - Call these regions R0, R1,
 - R_i has boundaries BP_i and BP_{i+1}
- <i>i</i>th TCAM contains prefixes in R_i and in the boundary paths BP_i and BP_{i+1}
Choosing Boundaries

- Choose B_i’s so that each region contains about equal number of prefixes.
- Each boundary path has at most 32 prefixes.
- Each TCAM has at most 64 additional shared prefixes.

Lookup

- The DestIP is sent to the ASIC
- The ASIC compares it with the Boundaries
- Now, the ASIC knows which TCAM to lookup
- Only that TCAM is looked up.
Inserts

- Divide the initial set of prefixes in equal sized regions.
 - Can be done by maintaining counts for each region
- During insert,
 - If there is free entry in the TCAM, use it
 - Else (rare) borrow a free entry from next TCAM by changing boundary.

Inserts (details)

Patricia Tree of IP prefixes
Insert (contd.)

• Say insert into a full TCAM$_i$
• Look at the boundary BP$_{i+1}$
• Let P be the first prefix strictly left of BP$_{i+1}$
• Set B$_i$ = P11..1
• Insert all prefixes on the new boundary path into TCAM$_{i+1}$
• Good amortized cost. Worst case 32 per boundary

Insert (better worst case)

• Use “diffused” boundaries
 – A TCAM has some prefixes just outside its boundaries
• Worst Case: 1 insert per boundary
Further Results

• Can be used to construct a ~3W TCAM for forwarding.
• Gives worst case power and throughput bounds
• Increase throughput for given traffic distribution
 – Use all TCAMs concurrently for different lookups
• Scales for IPv6