Synfinity II – A High-Speed Interconnect with 2GBytes/sec Self-Configurable Physical Link

Yoichi Koyanagi, Takeshi Horie, Takashi Miyoshi
And Mitsuo Ishii

Outline

1. Design goals
2. Architecture
3. Synfinity II chip set – MIC2 and Router2
4. Evaluation
5. Related technologies
6. Summary
Design Goals

1. High bandwidth and low latency data transfer
2. Scalable and flexible architecture
3. RAS (Reliability, Availability and Serviceability) features
4. Cost-effectiveness

Issues and Solutions

1. High bandwidth and low latency
 - Serialization overhead
 - Parallel-bit physical link
 - Routing table lookup overhead
 - Source routing

2. Scalability and flexibility
 - Dead-lock loop limits the network topology
 - Virtual lanes in a virtual channel
 - Application independence
 - Layered Architecture
 - Support both inter-chip and inter-cabinet connection
 - Self-configurable physical link
 - Centralized single clock degrades system scalability
 - Plesiochronous clocking
Issues and Solutions (cont’d)

3. RAS features
 Packet errors caused by noisy transmission lines
 ➔ Packet retransmission
 Unexpected unplugging or failure
 ➔ Automatic reinitialization (hot-plug) physical link
 Network management
 ➔ In-band access (initialization, error/status collection)
 Link failure on the path
 ➔ Automatic rerouting

4. Cost effectiveness
 External physical link transceiver
 ➔ Integrated CMOS physical link
 Expensive low-skew cable and PCB design
 ➔ Automatic deskew mechanism

Synfinity II Architecture

Layered Architecture
ISM: Interconnect Services Manager
RPM: Reliable Packet Mover
FFM: Fast Frame Mover

- In-band access
- Packet retransmission
- Automatic rerouting
- Source routing
- Multiple virtual lanes
- Hot-plug
- Plesiochronous clocking
- Automatic deskew
Physical Link

2GBytes/sec/direction parallel link
- 20bits data, 1bit clock (symbol rate: 1Gbps)

Plesiochronous clocking
- Tolerate +/- 200ppm frequency difference

Basic Control Logic (BCTL)
- Automatic deskew
- Automatic self-configuration (reinitialization)
 - Data rate: 2G, 1G, 500M, 250M Bytes/sec
 - Driver current adjustment to minimize power consumption
- Link exerciser for data transmission test

Physical Link Architecture

Clock receiver ➔ Phase tracking
Phase interpolator ➔ Timing generator
PRD receiver [Gotoh et al. ISSCC99] ➔ Equalization for long cable
Link Training Step (Initialization)

1. Phase adjust
2. Retiming
3. Deskew
4. Link exercise
5. Repeat until optimal speed/current

Maximum 4 bit-time skew can be compensated

Synfinity II Chip Set

MIC2: Node Interface chip (RPM, FFM)
Router2: Switch chip (FFM)

Packet retransmission
Interface to Router2

6 x 6 frame switching
24GBytes/sec aggregate bandwidth
MIC2 Microarchitecture

- **Outgoing RPM (ORPM)**
 - Retransmission
- **Transmission buffer (TBUF)**
 - Save packets
- **NodeFFM**
 - Interface to Router2
- **Incoming RPM (IRPM)**
 - Check packet, return acknowledge

Router2 Microarchitecture

- **Output Arbiter**
 - Assign grant
- **Cross-bar**
 - Data switch
- **Frame Buffer**
 - 20-entry frame pool (RAM)
- **Source Arbiter**
 - Arbitration request control
- **Built-In Self Test (BIST)**
 - Random frame generator
Evaluation

Workstation cluster configuration

Evaluation Results

Physical link initialization
- Automatically initialized successfully

Self-Configuration
- 2GBytes/sec in 5m cable, 1GBytes/sec in 15m cable

Message passing test program
- Ran stably with 2GBytes/sec link

Unplug and re-plug the cable while sending data
- Data transfer was resumed automatically

Measure BER using link exerciser and BIST
- Under 10^{-12} with 2GBytes/sec data transfer
Summary

- Synfinity II realizes High-speed low latency interconnect infrastructure with RAS functions

Future goals
- Enhance throughput for high-performance server systems
- Leverage other interconnects with Synfinity II physical link technology
Appendix

Automatic Link Configuration

- Wait incoming clock
- Set speed 1Gbps
- Set drive maximum
- Phase tuning
 - Deskew
- Random data check
- Error?
 - no
 - yes
- Drive -1
- Speed 1/2
- Drive max?
 - no
 - yes
 - Drive +1
 - done
MIC2 – A Node Interface Chip

Functions
RPM – Packet re-transmission
FFM – Interface to Router2

Frequency
250MHz (FFM), 66/200MHz (RPM)

Die size
10mm x 10.2mm 0.25um CMOS

Gates
380K gates

Router2 – A Switch Chip

Functions
FFM – 6 x 6 frame switching

Aggregate bandwidth
24GBytes/sec

Frequency
250MHz

Die size
15.6mm x 15.6mm 0.25um CMOS

Gates
1.2M gates