Major Points

Future Trends in High-Performance Interconnects for Parallel Computing are:

- Scalability of Systems
 - Much larger networks
- Scalability of Applications
 - Much more intelligence in adapter
- Convergence of Networks
 - Multiple functions for network
Looking into the future, we see platforms that will be 2PF/s in 2008 and 20-140 PF/s in 10 years.

The 10-year forecast calls for cellular systems with between 2^{16} (65,536) and 2^{19} (524,288) CPUs. Let's get scalable!

Large scale applications highly dependent on scalable MPI operations.
Cause is small, random perturbations in runtime due to interference with system activities.

One possible solution is to synchronize OS schedules.

Another solution is to simplify node OS and runtime to eliminate noise.
Best solution for general purpose cluster computing is to put key MPI functions into adapter

- **MPI_ALLREDUCE**
 - Min, Max – FP can be done as 64b integer operation
 - FP sum of small vector needs 64b FP ADD
 - Software emulation good enough?
- **MPI_BROADCAST**
- **MPI_BARRIER**
- **MPI_ALLGATHER, MPI_ALLSCATTER**
 - Launch and wait
- Fast implementation must allow for application reproducibility → reproducible ordering of FP operations

Larger Linux clusters require network convergence!

Four System Networks Does Not Scale!
- Quadrics ELAN4 for MPI
- 1000 BaseT Ethernet for Lustre
- 100 BaseT Ethernet for Management
- Serial console

System Parameters
- Quad 1.4 GHz Itanium2 Madison Tiger4 nodes with 8.0 GB DDR2 66 SDRAM
- <3µs, 900 MB/s MPI latency and Bandwidth over QsNet Elan4
- Support 400 MB/s transfers to Archive over quad Jumbo Frame Gb-Enet and QSW links from each Login node

Thunder achieved 19.94 teraFLOP/s (87% of peak and 2 on TOP500) on April 3, 2004

Partners
- LLNL: system architecture, CHAOS distro, system admin
- CDC: integration and delivery
- Intel: nodes & processors
- Quadrics: ELAN4
- DFS: Lustre
- DDN: SATA RAID
QsNet Elan4 modified fat-tree interconnect for a 1,024 node, 23 TF/s cluster

\[F = 1,024 \times 22.4 \text{ GF/s} = 22.94 \text{ TF/s} \]

Node B:F = 2.0 GB/s / 22.94 GF/s = 0.087

System B:F = 1.0 TB/s / 22.94 TF/s = 0.0446

Node : System = 2.0

Requires 24 QsNet Elan4 128-way switches & 2,000 Cables

\[\text{B=k}(2.0 \text{ GB/s}) = 1,024 \text{ GB/s} \]

1,024 Elan4 ports, 2.0 GB/s (1+1 bi-directional) each

This scales up to 64x64 or 4,096 ports

Federated 1 Gb Ethernet switching infrastructure requires distributed network between multiple building

Shared file system require shared routable networking. Infiniband is not going to solve the complexity problem.