Winning with Pinning in NoC

Ahmed Abousamra, Rami Melhem, Alex Jones
University of Pittsburgh
Outline

• Problem Description

• Prior Work
 – Reducing hop count
 – Reducing latency through router

• Our Suggested Solution

• Simulation Results

• Conclusion
Problem Description

• We consider multi-threaded applications running on CMPs
• Threads share data, thus cache coherence traffic travel on the NoC
• Performance is affected by the communication latency on the NoC
• Our work aims to improve this latency
Prior Work - Reduce communication latency by reducing global hop count

- Examples:
 - Flattened butterfly topology: high radix routers to enrich connectivity \((MICRO\ 2007)\)
 - Concentrated mesh: share each router among multiple nodes \((ICS\ 2006)\)
 - Hierarchical NoC such as Hybrid Ring/Mesh interconnect \((NOCS\ 2007)\)
 - A low-radix low-diameter 3D interconnect for 3D stacked chips connects every pair of communication points in at most 3 hops \((HPCA\ 2009)\)
Prior Word – Reduce communication latency through router pipelining

Router Pipeline for Packet Switched Traffic

Allowing some of the traffic to bypass the router pipeline

Router Pipeline for Circuit Switched Traffic
Prior Word – Reduce communication latency through router pipeline bypassing

EVC: Express Virtual Channels

HCT: Hybrid circuit switching (PS & CS traffic)
Prior Word – Hybrid Circuit
Switched NoC

\[\text{NoC} = \begin{array}{c}
\text{Control Traffic} \\
\text{(Packet Switched)}
\end{array} + \begin{array}{c}
\text{Coherence &} \\
\text{Data Traffic}
\end{array} + \begin{array}{c}
\text{Coherence &} \\
\text{Data Traffic}
\end{array} \ldots \]

- May destroy other circuits
- Circuit can be used with next packet

Flowchart:
- Circuit Exists
 - \(Y \): Send CS packet
 - \(N \):
 - Send Circuit config. request
 - Send PS packet
Motivation – What happens when circuits are created on demand

Average number of cycles between sending two consecutive packets from same source to same destination

% of flits traveling on circuits from source to destination
Our Approach - Circuit Configuration and Pinning

• We want to increase circuit re-use
• To take advantage of temporal communication locality, our suggested solution is:
 – Configure the most important circuits
 – Pinning: keep the circuit configuration stable
 – Periodically repeat the above steps to cope with changes in communication
Our Approach - Circuit Configuration and Pinning

- Decide new circuits & configuration
- Not Active Yet

Flush in-flight CS packets

New configuration becomes active
How many circuits can be established from each source?

• Conflicts can arise due to limited resources.
• Can resolve conflicts by using multiple interconnection planes
How to determine the most important circuits?

- Keep count of the packets sent from each source to each destination.
- The greater the number of packets sent, the more important the circuit is.
How to configure Circuits?

- Through a centralized controller

<table>
<thead>
<tr>
<th></th>
<th>n₀</th>
<th>n₁</th>
<th>n₂</th>
<th>n₃</th>
<th>n₄</th>
<th>n₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>n₀</td>
<td>n₅</td>
<td>n₀</td>
<td>n₁</td>
<td>n₁</td>
<td>n₀</td>
<td>n₂</td>
</tr>
<tr>
<td>n₁</td>
<td>n₃</td>
<td>n₄</td>
<td>n₅</td>
<td>n₄</td>
<td>n₂</td>
<td>n₁</td>
</tr>
<tr>
<td>n₂</td>
<td>n₂</td>
<td>n₃</td>
<td>n₀</td>
<td>n₁</td>
<td>n₃</td>
<td>n₄</td>
</tr>
<tr>
<td>n₃</td>
<td>n₄</td>
<td>n₅</td>
<td>n₅</td>
<td>n₀</td>
<td>n₃</td>
<td>n₄</td>
</tr>
</tbody>
</table>

Round 1
Round 2
How to configure Circuits?

• Or in a distributed fashion through a two phase reserve-confirm algorithm for each round.

Reservation Succeeds

Reservation Fails
Partial Circuit Routing

• With stable circuit configuration, we can use partial circuit routing.

• Use a unary counter to indicate the number of links on the partial circuit.

Unary counter example:

$100 = \text{CS}$
$10 = \text{CS}$
$1 = \text{PS}$
Simulation Environment

• We use Simics to simulate 16 in-order 2-issue Sparc processors
• Two Cache Organizations
 – Distributed shared L2 (SNUCA)
 – Private L2
• Two Bank sizes
 – 1 MB
 – 256 KB
• Splash-2 and Parsec 1.0 Benchmarks
Simulation Environment

• Four types of NoCs:
 – Packet Switched Interconnect (PSI): 1 plane, 64 byte link width
 – Hybrid Circuit Switched Interconnect with On-Demand Circuit Configuration (CSID): 4 planes, 16 byte link width
 – Hybrid Circuit Switched Interconnect with Pinned Circuit Configuration (CSIP): 4 planes, 16 byte link width
 – Hybrid Circuit Switched Interconnect with Pinned Circuit Configuration and Partial Circuit Routing (CSIPR): 4 planes, 16 byte link width
Simulation Results

SNUCA L2 (1MB) - Normalized Average Flit Latency
Simulation Results

SNUCA L2 (1MB) - Normalized Execution Time
Simulation Results

SNUCA L2 (1MB) - % Flits using complete circuits
Simulation Results

SNUCA L2 (1MB) - % Flits using partial circuits
Conclusion

• Pinning attempts to exploit communication locality to improve communication latency
• Adapt to changes through periodic reconfiguration.
• Pinning alone improves flit latency over on-demand circuits by 10%,
• Partial circuit routing adds another 10% for a total of 20% improvement
Thank You!

Questions?