HybridCuts: A Scheme Combining Decomposition and Cutting for Packet Classification

Wenjun Li
Xianfeng Li

School of Electronic and Computer Engineering (ECE)
Peking University

IEEE Hot Interconnects 21
San Jose, CA, August 21-22, 2013
Outline

- Background
- HybridCuts
- Evaluation
- Conclusion
PART I: Background
Packet Classification

- Key for policy enforcement in packet forwarding

Diagram:

- **Incoming Packet**
 - Header
 - Payload

- **Router / Firewall**
 - Forwarding Engine
 - Flow Classification
 - Classifier (Rule Database)

- **Outgoing Packet**
 - Header
 - Payload

Table

<table>
<thead>
<tr>
<th>#</th>
<th>SA</th>
<th>DA</th>
<th>SP</th>
<th>DP</th>
<th>Prot</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1.2.3.0/20</td>
<td>192.168.0.1</td>
<td>[1,65534]</td>
<td>[1,65534]</td>
<td>TCP</td>
<td>accept</td>
</tr>
<tr>
<td>r2</td>
<td>1.2.3.11/24</td>
<td>1.2.3.11/24</td>
<td>80</td>
<td>[1,65534]</td>
<td>UDP</td>
<td>accept</td>
</tr>
<tr>
<td>r3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>discard</td>
</tr>
</tbody>
</table>
Why Yet Another Paper?

A well established problem

without

Well established solutions

- **Algorithmic:** Desired but speed/memory inefficient
- **Architectural:** Fast but expensive, power hungry, poor scalability and suffer from range expansion
Recent Efforts on Algo. Solutions

EffiCuts [SIGCOMM’10]
- Reduction by Separation
- Equal-dense cutting, etc

Pros
- Reduction on memory consumption

Cons
- Increase on #memory accesses
Better Solutions?

Rule separation: the right direction

Better separations
(with less rule groups)

+

Better cuttings
(by exploiting characteristics)
A Little Review...

- **Decomposition**
- **Cutting**

Diagram showing decomposition and cutting with packets and nodes.
PART II: HybridCuts
HybridCuts

A two-stage scheme

1st Stage
Decomposition

- SA-subset
- DA-subset
- SP-subset
- DP-subset
- Big-subset

2nd Stage
Cutting

- Decision Tree SA
- Decision Tree DA
- Decision Tree SP
- Decision Tree DP
- Decision Tree Big

Preprocessing & Constructing search structure
Observations (1)

Very few big rules!

Threshold: (SA, DA, SP, DP)
Observation (2)

Decomposition

X-Subset

Y-Subset
Decomposition

Traditional Decomposition

Packet Header
- Search in SA
- Search in DA
- Search in SP
- Search in DP
- Search in Prot

Match Aggregation
- Rules matching SA
- Rules matching DA
- Rules matching SP
- Rules matching DP
- Rules matching Prot

Priority Selector
- Best matching in SA-subset
- Best matching in DA-subset
- Best matching in SP-subset
- Best matching in DP-subset
- Best matching in Big-subset

Highest Priority Rule

Improved Decomposition

Packet Header
- SA-subset tree
- DA-subset tree
- SP-subset tree
- DP-subset tree
- Big-subset tree

Match Aggregation
- Rules matching SA
- Rules matching DA
- Rules matching SP
- Rules matching DP
- Rules matching Prot

Priority Selector
- Best matching in SA-subset
- Best matching in DA-subset
- Best matching in SP-subset
- Best matching in DP-subset
- Best matching in Big-subset

Highest Priority Rule
FiCuts: Fixed intelligent Cuttings

HiCuts \rightarrow FiCuts

Simpler but more efficient

Global optimization wins!
A hybrid FiCuts + HyperCuts

- **When to switch to HyperCuts?**
 - Subspace becomes small, and rule replication becomes intense
 - A threshold to trigger the FiCut=>HyperCuts switching
Effectiveness (1)

- 14 → 36 rules

HyperCuts
Effectiveness (2)

14 → 14 rules

Y-Subset

HybridCuts

X-Subset
Optimization

- Can be smaller? 5 → 3 subsets

Threshold: (SA, DA)
PART III: Evaluation
Experimental Setup

- **Tested with**
 - A publicly available rule set from Washington University
 - Used the ACL & FW & IPC 1K, 10K
 - ClassBench
 - Generate ACL & FW & IPC 100K

- **Compared with**
 - HyperCuts & EffiCuts

- **Primary metrics**
 - Memory consumption (Bytes/rule)
 - Number of memory accesses

- **Open Source for HybridCuts**
 - https://github.com/lwj4333765/HybridCuts
Memory Consumption

Bytes per rule

- HyperCuts
- EffiCuts
- HybridCuts

ACL_1K ACL_10K ACL_100K FW_1K FW_10K FW_100K IPC_1K IPC_10K IPC_100K
Memory Accesses

Overall Memory Accesses

HyperCuts EffiCuts HybridCuts

ACL_1K ACL_10K ACL_100K FW_1K FW_10K FW_100K IPC_1K IPC_10K IPC_100K
More Insights

The sizes of subsets

The sizes of trees
Potential Gain with Parallelization

Overall #memory accesses
Worst-case tree height

ACL_1K ACL_10K ACL_100K FW_1K FW_10K FW_100K IPC_1K IPC_10K IPC_100K
PART V: Conclusion
Conclusion

- **HybridCuts:**
 - decomposition + cutting
 - New observations
 - A new rule set decomposition
 - A hybrid One- + Multi- dimensional cutting

- **Future Works**
 - OpenFlow
 - Software-hardware combined, e.g., FPGA
 - Combine with TCAM
Thank you!

E-mail: liwenjun@sz.pku.edu.cn
Web: http://liwenjun.weebly.com